Custom Dilution Probe for Increased CEMS Accuracy

EUEC Conference B8.6
February 3, 2010
Scott D. Brown
Sample Handling – Critical Path for CEMS

PROBE
CONDITIONING SYSTEM
ANALYZERS
DATA ACQUISITION

SO₂
CO₂
NOₓ
Perma Pure – Gas Sample Handling

3 Technologies:

• Dilution Probes
 – Wet measurement

• Baldwin™ brand Thermoelectric Coolers
 – Water removal through flash condensation

• Nafion® permeation dryers and systems
 – Water removal in vapor phase at the stack through unique membrane dryer (ion exchange) technology

• Plus extractive probes, filters, scrubbers, accessories
The Facility

Intermountain Power Service Corporation (IPSC)

Twin 950 MW coal-fired steam electric generators

Delta, UT
The Opportunity

• Help IPSC achieve more accurate CEMS reporting of CO$_2$. 16 million tons/year; a couple % adds up.

• Working with RMB Consulting and software provider Cartwright Associates, IPSC had developed an algorithm to compensate for high CO$_2$ bias.

• The algorithm required precise pressure and temperature measurements at the point of dilution, i.e. the critical orifice.

• IPSC desired a total of 3 pressure and 9 temperature measurements in each of 4 probes (2 inlet, 2 outlet).
The Design Challenges

- Temperature measurements would not be too difficult.
- Could we design pressure ports near the critical orifice, on either side, without altering the flow path?
- Could we isolate the upstream pressure port during blowback?
- Could we stabilize temperature and pressure to ensure a stable dilution ratio and thus stable readings?
- How would we accommodate all the addition wiring?
Oh, By the Way

- Could we finalize the design and build 4 custom probes for installation 2300 miles away scheduled in less than 5 weeks?
Baldwin™ Model 45 Dilution Probe

Ex-Situ
Model 45 Interior
Monel Critical Orifice – Flow Path
Pressure Measurements

1. Critical Orifice Upstream Pressure Transmitter Port
 - To verify gas density
 - At critical (sonic), speed is constant, but volumetric flow is not

2. Critical Orifice Downstream Vacuum Transmitter Port
 - To verify that flow is maintained at critical

3. Dilution Air Pressure Transmitter
 - Installed just after regulator, to ensure stable pressure
Temperature Measurements

1. Critical Orifice, Upstream
2. Dilution Air Inlet
3. Stack
4. Calibration Gas Inlet
5. Blowback/Purge Inlet
6. Filter Body Housing (Controller)
7. Enclosure Air (Controller)
8. Heated Stinger (Controller)
9. Heated Umbilical (Controller)
Dual Enclosures

Objectives:

1. Maintain 290°-300°C for Filter Housing
2. Allow Ambient Temperature for all Connections
3. Plenty of room to work
Upper (Heated) Enclosure

- Heated Backplate
- Blowback Tank – controlled by IPSC PLC
Objective: Maintain Stable Temperatures

1. Dilution Air HE (aluminum)
2. Cal Gas HE (SS)
3. Blowback Air HE (aluminum)
Filter Housing/Critical Orifice Design

- Filter Housing
- Cartridge Heaters
- Filter Housing RTD
- Dilution Air RTD
- Upstream Orifice
- Pressure Port
- Downstream Orifice
- Vacuum Port
- Diluted Sample Out
- Upstream Orifice RTD
- Upstream Orifice Pressure Port
Lower (Ambient) Enclosure (Installed)

Front Panel

Temp Readings

Dilution (Eductor) Pressure Adjustment
Heated Stinger Design

Objective: Maintain Stable Sample Gas Temperature

Requirements:

• 2 outlet stingers (Inlet stingers were reused)
• 8 feet extension into stack, plus 10” external
• C256 Hastelloy sample tube with removable PFA liner
• Accessibility chamber for changing liner without removing stinger from the stack
• 316 SS shell with fiberglass insulated heat tape (Amptek heavy AMOX insulated Duo-Tape)
• Separate 2 foot probe for stack temperature
Heated Stinger
Teflon Liner Access
Installation

• Performed by IPSC in April, 2009
• Perma Pure provided on-site technical support
• Installation Unit 1 during Shutdown
• Installation Unit 2 during Operation
• Elapsed Time: 5 days for all 4 probes
Installed View

IPSC Cabinet:
- Transmitters
- Digital displays
- PLC

© Perma Pure, 2010
Probes Enables Greater Accuracy

- Probe designed to yield maximum stability of temperature and pressure
- Dilution ratio is not assumed to be constant. Instead, it is calculated dynamically for greater accuracy
- Plant uses dilution ratio correction algorithm to calculate true dilution ratio based on sensor outputs from probe
- IPSC now adjusts the dilution pressure to achieve an initial dilution ratio that yields precise cal gas measurement
Calibration Routine (Quarterly if needed)

1. CO₂ Analyzer set – zero & span at diluted level (≈1200ppm)
2. Run CO₂ cal gas (12%) through probe and adjust eductor pressure control so the diluted sample matches cal gas tag value
3. Enter remaining parameters into software
 1. Sample pressure, critical orifice temp
 2. Set other gas constituent analyzers
4. Software correction enabled
 - From this point, software will make corrections as necessary based on continuous pressure/temp/molecular weight readings
Final Results

• Each Unit passed RATA the week after installation
• Overall $\approx 2\%$ reduction in reported CO$_2$ bias as a result of probe and algorithm
• Difference of $\approx 300,000$ tons/year reported CO$_2$
Questions?