Perma Pure LLC

Custom Dilution Probe for Increased CEMS Accuracy

EUEC Conference B8.6 February 3, 2010

Scott D. Brown

Sample Handling – Critical Path for CEMS

© Perma Pure, 2010

Page 2

Perma Pure – Gas Sample Handling

3 Technologies:

- Dilution Probes
 - Wet measurement
- Baldwin[™] brand Thermoelectric Coolers
 - Water removal through flash condensation
- Nafion[®] permeation dryers and systems
 - Water removal in vapor phase at the stack through unique membrane dryer (ion exchange) technology
- Plus extractive probes, filters, scrubbers, accessories

The Facility

Intermountain Power Service Corporation (IPSC)

Twin 950 MW coal-fired steam electric generators

Delta, UT

© Perma Pure, 2010

The Opportunity

- Help IPSC achieve more accurate CEMS reporting of CO₂. 16 million tons/year; a couple % adds up.
- Working with RMB Consulting and software provider Cartwright Associates, IPSC had developed an algorithm to compensate for high CO₂ bias.
- The algorithm required precise pressure and temperature measurements at the point of dilution, i.e. the critical orifice.
- IPSC desired a total of 3 pressure and 9 temperature measurements in each of 4 probes (2 inlet, 2 outlet).

The Design Challenges

- Temperature measurements would not be too difficult
- Could we design pressure ports near the critical orifice, on either side, without altering the flow path?
- Could we isolate the upstream pressure port during blowback?
- Could we stabilize temperature and pressure to ensure a stable dilution ratio and thus stable readings?
- How would we accommodate all the addition wiring?

Oh, By the Way

 Could we finalize the design and build 4 custom probes for installation 2300 miles away scheduled in less than 5 weeks?

Baldwin™ Model 45 Dilution Probe

Ex-Situ

© Perma Pure, 2010

Page 8

Model 45 Interior

Monel Critical Orifice – Flow Path

© Perma Pure, 2010

Pressure Measurements

1. Critical Orifice Upstream Pressure Transmitter Port

- To verify gas density
- At critical (sonic), speed is constant, but volumetric flow is not
- **2.** Critical Orifice Downstream Vacuum Transmitter Port
 - To verify that flow is maintained at critical
- **3.** Dilution Air Pressure Transmitter
 - Installed just after regulator, to ensure stable pressure

Temperature Measurements

- **1.** Critical Orifice, Upstream
- **2.** Dilution Air Inlet
- 3. Stack
- 4. Calibration Gas Inlet
- **5.** Blowback/Purge Inlet
- **6.** Filter Body Housing (Controller)
- 7. Enclosure Air (Controller)
- 8. Heated Stinger (Controller)

9. Heated Umbilical (Controller)

Dual Enclosures

Objectives:

- Maintain 290° 300°C for Filter
 Housing
- 2. Allow Ambient Temperature for all Connections
- 3. Plenty of room to work

Upper (Heated) Enclosure

Heated Backplate

Blowback Tank – controlled by IPSC PLC

Page 14

Heat Exchangers (Upper Enclosure)

- **Objective:** Maintain Stable Temperatures
- 1. Dilution Air HE (aluminum)
- 2. Cal Gas HE (SS)
- **3.** Blowback Air HE (aluminum)

Filter Housing/Critical Orifice Design

Orifice **Vacuum Port** Diluted **Sample Out**

Upstream **Orifice RTD**

Upstream Orifice Pressure Port

Lower (Ambient) Enclosure (Installed)

Heated Stinger Design

Objective: Maintain Stable Sample Gas Temperature Requirements:

- 2 outlet stingers (Inlet stingers were reused)
- 8 feet extension into stack, plus 10" external
- C256 Hastelloy sample tube with removable PFA liner
- Accessibility chamber for changing liner without removing stinger from the stack
- 316 SS shell with fiberglass insulated heat tape (Amptek heavy AMOX insulated Duo-Tape)

Separate 2 foot probe for stack temperature

Heated Stinger

Teflon Liner Access

© Perma Pure, 2010

Installation

- Performed by IPSC in April, 2009
- Perma Pure provided on-site technical support
- Installation Unit 1 during Shutdown
- Installation Unit 2 during Operation
- Elapsed Time: 5 days for all 4 probes

Installed View

Inlet Side

Outlet Side

© Perma Pure, 2010

Probes Enables Greater Accuracy

- Probe designed to yield maximum stability of temperature and pressure
- Dilution ratio is not assumed to be constant. Instead, it is calculated dynamically for greater accuracy
- Plant uses dilution ratio correction algorithm to calculate true dilution ratio based on sensor outputs from probe
- IPSC now adjusts the dilution pressure to achieve an initial dilution ratio that yields precise cal gas measurement

Calibration Routine (Quarterly if needed)

- **1.** CO₂ Analyzer set zero & span at diluted level (≈1200ppm)
- 2. Run CO₂ cal gas (12%) through probe and adjust eductor pressure control so the diluted sample matches cal gas tag value
- **3.** Enter remaining parameters into software
 - 1. Sample pressure, critical orifice temp
 - 2. Set other gas constituent analyzers
- **4.** Software correction enabled
 - From this point, software will make corrections as necessary based on continuous pressure/temp/molecular weight readings

© Perma Pure, 2010

Final Results

- Each Unit passed RATA the week after installation
- Overall ≈ 2% reduction in reported CO₂ bias as a result of probe and algorithm
- Difference of ≈ 300,000 tons/year reported CO₂

Questions?

© Perma Pure, 2010

Page 26